The Ecology

A journal of how things fit into our environment


What the fuck did I find while digging?


A USB cord.  But, in all seriousness, I’m pretty sure these are snake eggs. When I was in Costa Rica, we used to compost a lot and lizards would lay their eggs in the loose dirt all the time, which is what snakes do as well.

Shape and coloration look about right and the fact that you found more than one makes sense, too. There’s probably more, honestly, that you didn’t find.

Were the eggs leathery or hard? If it’s leathery/soft, it’s even more likely to be due to a snake.

Also, there looks like a little snake coming out of the first egg! Finding a snake inside of the egg is a very strong clue that you found snake eggs.


exactly correct about more. There were multiples in the dirt, but I only brought two up to post pictures of




Yup, that’d confirm it for me!
If there are unbroken ones, you can hold it up to a light and see the embryo inside. It should look very round, as the snake is curled up inside very tightly.
The reddish part inside may be part of a ruptured allantois structure, which has lots of blood vessels inside. This is part of the waste-holding part of the egg.

Question for you, One time I killed a garter snake and when I split it open there were like 12 little snakes inside it, all the same length. What’s this mean?



Aha!
Like in many things, there’s always exceptions.
Garter snakes are viviparous, meaning that they give birth to live young. More specifically, they are ovoviviparous, meaning that there are still eggs, with yolks, unlike humans, for example, that have direct placental connections.
So, to answer your question: you killed 13 snakes.



What the fuck did I find while digging?



A USB cord.  But, in all seriousness, I’m pretty sure these are snake eggs. When I was in Costa Rica, we used to compost a lot and lizards would lay their eggs in the loose dirt all the time, which is what snakes do as well.



Shape and coloration look about right and the fact that you found more than one makes sense, too. There’s probably more, honestly, that you didn’t find.



Were the eggs leathery or hard? If it’s leathery/soft, it’s even more likely to be due to a snake.



Also, there looks like a little snake coming out of the first egg! Finding a snake inside of the egg is a very strong clue that you found snake eggs.



exactly correct about more. There were multiples in the dirt, but I only brought two up to post pictures of



Yup, that’d confirm it for me!



If there are unbroken ones, you can hold it up to a light and see the embryo inside. It should look very round, as the snake is curled up inside very tightly.



The reddish part inside may be part of a ruptured allantois structure, which has lots of blood vessels inside. This is part of the waste-holding part of the egg.





Question for you, One time I killed a garter snake and when I split it open there were like 12 little snakes inside it, all the same length. What’s this mean?



Aha!



Like in many things, there’s always exceptions.



Garter snakes are viviparous, meaning that they give birth to live young. More specifically, they are ovoviviparous, meaning that there are still eggs, with yolks, unlike humans, for example, that have direct placental connections.



So, to answer your question: you killed 13 snakes.


This post comes to me from Reddit, where a man found out that the apple seeds inside of his apple had begun to sprout!
This is very interesting! This is very much a “defective” seed, as, unfortunately, the apple would have no chance of being able to survive inside of its own fruit.

Most fruits have evolved to be eaten! That said, they aren’t meant to be entirely digested. It is in the fruit’s best interest to provide as little nutrition as possible while still being attractive to the thing that eats it. Most fruits include a laxative to ensure that the seed (which houses precious nutrients) passes through the animal’s digestive tract unharmed. Some berries and fruits can pass through a bird’s digestive tract in under half an hour!

Why is that? Well, it wouldn’t be good for the plant to have its fruit eaten and get nothing out of it!

The reason your apple seed may have developed inside the apple could be due to a variety of reasons. Temperature may have been right. Oxygen may have gotten in. Could have accumulated water somehow.

It may have been rubbed against something and had its seed coat damaged in some way. For many plants, etching of the seed coat can bring about germination. These techniques fall under a poorly understood part of biology which is called “seed dormancy.” Other seeds require temperature differences, for example, some apples require winter frost in order to grow correctly. Some plants, like certain conifers, require fire to melt the resin on their pinecones to release and scorch the seeds before they can germinate! Mercy!

Some seeds are chemically damaged by stomach acids, which “alerts” the seed that it has passed through the digestive tract of an animal and now is likely surrounded by nitrogenous wastes (in the form of urine or feces). For your little apple seed, though, there isn’t much of a chance. The seed houses nutrients that allow the cotyledon (the first “leaves” of a germinating plant) to reach out, even in darkness; however, this is just a kick start.

Thinking about this more, if there were no physical damage to the apple, there may have been a hormone imbalance. Abscisic acid prevents seed germination and typically builds up in fruits as they mature, so its possible that this particular fruit may have had abscisic acid deficiency or a giberellin overproduction!

Without the sun, the plant will obviously not survive, having quickly run out of energy held within the seed.

Additionally, do remember that most apples sold commercially are grafted, so if you were to plant that seed and have it survive, the apples you would potentially get would not necessarily be the apple that it came from!

This fact is also why Johnny Appleseed planted a bunch of worthless apples that no one wanted to eat. He probably made some cider, I guess.



This post comes to me from Reddit, where a man found out that the apple seeds inside of his apple had begun to sprout!

This is very interesting! This is very much a “defective” seed, as, unfortunately, the apple would have no chance of being able to survive inside of its own fruit.



Most fruits have evolved to be eaten! That said, they aren’t meant to be entirely digested. It is in the fruit’s best interest to provide as little nutrition as possible while still being attractive to the thing that eats it. Most fruits include a laxative to ensure that the seed (which houses precious nutrients) passes through the animal’s digestive tract unharmed. Some berries and fruits can pass through a bird’s digestive tract in under half an hour!



Why is that? Well, it wouldn’t be good for the plant to have its fruit eaten and get nothing out of it!



The reason your apple seed may have developed inside the apple could be due to a variety of reasons. Temperature may have been right. Oxygen may have gotten in. Could have accumulated water somehow.



It may have been rubbed against something and had its seed coat damaged in some way. For many plants, etching of the seed coat can bring about germination. These techniques fall under a poorly understood part of biology which is called “seed dormancy.” Other seeds require temperature differences, for example, some apples require winter frost in order to grow correctly. Some plants, like certain conifers, require fire to melt the resin on their pinecones to release and scorch the seeds before they can germinate! Mercy!



Some seeds are chemically damaged by stomach acids, which “alerts” the seed that it has passed through the digestive tract of an animal and now is likely surrounded by nitrogenous wastes (in the form of urine or feces). For your little apple seed, though, there isn’t much of a chance. The seed houses nutrients that allow the cotyledon (the first “leaves” of a germinating plant) to reach out, even in darkness; however, this is just a kick start.



Thinking about this more, if there were no physical damage to the apple, there may have been a hormone imbalance. Abscisic acid prevents seed germination and typically builds up in fruits as they mature, so its possible that this particular fruit may have had abscisic acid deficiency or a giberellin overproduction!



Without the sun, the plant will obviously not survive, having quickly run out of energy held within the seed.



Additionally, do remember that most apples sold commercially are grafted, so if you were to plant that seed and have it survive, the apples you would potentially get would not necessarily be the apple that it came from!



This fact is also why Johnny Appleseed planted a bunch of worthless apples that no one wanted to eat. He probably made some cider, I guess.

Here’s a great old illustration!  The big indentations on the top/sides of the head are areas where muscles attach in from the neck.  These are what give animals like the hyena such amazing crushing jaw strength!  The flattened bone in the middle of these muscles groups is referred to as the “sagittal crest!”

Here’s a great old illustration!  The big indentations on the top/sides of the head are areas where muscles attach in from the neck.  These are what give animals like the hyena such amazing crushing jaw strength!  The flattened bone in the middle of these muscles groups is referred to as the “sagittal crest!”

(Source: f1re0nthesun, via scientificillustration)


While many people think of bugs, insects and spiders as simple, uncaring monsters, some actually have a very high amount of parental care! A female spider will fertilize the eggs with sperm stored from a previous encounter with a male spider and then often times, weave a specialized web egg sac for them to be housed in.

Other spiders, like wolf spiders, will carry the young on her abdomen! If you squish the spider, their babies may escape and be off on their own a bit more prematurely.  Some spiders species have moms that may take care of them for a while as they grow, feeding them from her mouth, or cutting open prey for them to feed on. For other spiders, while they are growing up, the baby spiders will help with web maintenance in some cases, too, while they are provisioned by their mother.

Then, just like human teenagers, the young will suck the mother dry of all resources and leave her for dead.



While many people think of bugs, insects and spiders as simple, uncaring monsters, some actually have a very high amount of parental care! A female spider will fertilize the eggs with sperm stored from a previous encounter with a male spider and then often times, weave a specialized web egg sac for them to be housed in.



Other spiders, like wolf spiders, will carry the young on her abdomen! If you squish the spider, their babies may escape and be off on their own a bit more prematurely.  Some spiders species have moms that may take care of them for a while as they grow, feeding them from her mouth, or cutting open prey for them to feed on. For other spiders, while they are growing up, the baby spiders will help with web maintenance in some cases, too, while they are provisioned by their mother.



Then, just like human teenagers, the young will suck the mother dry of all resources and leave her for dead.


Behold!  The social feather duster!  A relative of Bispira brunnea, which has more of an orange/tan coloration, this grouping of feather dusters (Sabellastarte spectabilis) is absolutely gorgeous!

When I ran a salt water aquarium, these were some of my favorite guys to have in there.  But what are they?  Coral?

Nope, as with most biology, the answer is much grosser: it’s a worm.  Encasing itself in a thin cuticle, this worm extends long, feathery appendages out to capture food.  If you or something else touches the fan part of the worm, it can retract it almostinstantaneouslyinto its body cavity!

Interestingly, we are not so different from this worm, as their blood often runs red like ours, owing to hemoglobin, the same iron-based protein we have!  This is what is responsible for the coloration in the protrusions in the giant tube worm (Riftia pachyptila) as well, give it its characteristic “lipstick” look.



Behold!  The social feather duster!  A relative of Bispira brunnea, which has more of an orange/tan coloration, this grouping of feather dusters (Sabellastarte spectabilis) is absolutely gorgeous!



When I ran a salt water aquarium, these were some of my favorite guys to have in there.  But what are they?  Coral?



Nope, as with most biology, the answer is much grosser: it’s a worm.  Encasing itself in a thin cuticle, this worm extends long, feathery appendages out to capture food.  If you or something else touches the fan part of the worm, it can retract it almostinstantaneouslyinto its body cavity!



Interestingly, we are not so different from this worm, as their blood often runs red like ours, owing to hemoglobin, the same iron-based protein we have!  This is what is responsible for the coloration in the protrusions in the giant tube worm (Riftia pachyptila) as well, give it its characteristic “lipstick” look.

Giant Tube Worms!

oldbookillustrations:

Tubeworms: Spirographis Spallanzani
Paul Flanderky, from Brehms Tierleben (Brehm’s animal life) first volume, under the direction of Alfred Edmund Brehm, Leipzig & Vienna, 1918.
(Source: archive.org)

Great illustration of tube worms, see my next post for more on social feather dusters!

oldbookillustrations:

Tubeworms: Spirographis Spallanzani

Paul Flanderky, from Brehms Tierleben (Brehm’s animal life) first volume, under the direction of Alfred Edmund Brehm, Leipzig & Vienna, 1918.

(Source: archive.org)

Great illustration of tube worms, see my next post for more on social feather dusters!

(via scientificillustration)



How do jellyfish reproduce?


First things first: jellyfish are both sexual and asexual, so how they reproduce can be very tricky and depend on the chosen route taken!

People also don’t realize that jellyfish have an asexual “polyp” stage in which they are sessile (immobile). Eventually, that polyp elongates and divides eventually releasing a huge amount of ephyrae (baby jellyfish) in the water, these develop into the medusa of the jellyfish that are most known.

Some jellyfish skip this stage entirely and can reproduce through fission.

When sexually reproducing, the jellyfish will release huge amounts of eggs and sperm into the water and essentially work in an analogous way to wind-pollination on land (or more accurately, we are analogous to the water, as they came first! [joke intended]) where they essentially are relying on random chance for egg and sperm to meet.

tl;dr: Jellyfish are weird.



How do jellyfish reproduce?



First things first: jellyfish are both sexual and asexual, so how they reproduce can be very tricky and depend on the chosen route taken!



People also don’t realize that jellyfish have an asexual “polyp” stage in which they are sessile (immobile). Eventually, that polyp elongates and divides eventually releasing a huge amount of ephyrae (baby jellyfish) in the water, these develop into the medusa of the jellyfish that are most known.



Some jellyfish skip this stage entirely and can reproduce through fission.



When sexually reproducing, the jellyfish will release huge amounts of eggs and sperm into the water and essentially work in an analogous way to wind-pollination on land (or more accurately, we are analogous to the water, as they came first! [joke intended]) where they essentially are relying on random chance for egg and sperm to meet.



tl;dr: Jellyfish are weird.

oldbookillustrations:

Jellyfish.
Paul Flanderky, from Brehms Tierleben (Brehm’s animal life) first volume, under the direction of Alfred Edmund Brehm, Leipzig & Vienna, 1918.
(Source: archive.org)

Lovely old illustration!  See the following post for more on jellyfish!

oldbookillustrations:

Jellyfish.

Paul Flanderky, from Brehms Tierleben (Brehm’s animal life) first volume, under the direction of Alfred Edmund Brehm, Leipzig & Vienna, 1918.

(Source: archive.org)

Lovely old illustration!  See the following post for more on jellyfish!

(via scientificillustration)

majorcupcake said: Have you gotten a surge of followers since you were up voted to oblivion on the mountain goat post?

Haha, I wish!  I have gotten about twenty or so extra followers since yesterday, though, which already blows my mind!

It’s great to see that people actually seem to want more biological facts crammed down their throats! 

I’m very okay with that.

As a bonus for your question, here’s a photo of a very content urban rabbit that I found in a park a week ago!


The above photo of “The World’s Most Badass Ladybug” was posted on Reddit, which I found as a great way to open the door for some great biological conversation!

While this bug may be in for an unexpectedly high (and probably fatal) ride, many insects do, in fact, travel quite high!

There is a billion-bug byway in the sky above your head, and you may not even know it! Some insects have been found as high as 19,000 feet! That’s higher than some private planes are allowed to fly, due to a need for pressurization!

Why do insects fly this high? The same reason you and I do: transportation! It’s possible that they even join the mile high club, just like humans, while airborne, but it’s probably a bit more difficult. Even spiders may throw out a piece of web to catch the breeze. Dispersion in the wind is a common tactic for many organisms to travel huge distances, which is how many pests for agriculture are spread! Tiny little bugs can travel much farther on a steady windstream than they could on foot.

Falling isn’t a problem for a little insect, as their surface area to body weight ratio is huge, allowing them to remain unscathed from falls that would kill a human easily.

Some estimates have put the number of sky-bound insects at over 3 billion a month over places like England in the summer! Other places have been estimated as high as 6 billion!

Let’s have some fun: if a ladybug weighs approximately 0.02 grams, and we assume most bugs weigh around the same, on average, that means that, over a month, there is 0.02 x 3,000,000,000 grams of bugs in the sky over a large city. This comes out to 60,000 kg (132,000 lbs) of insect biomass in the city air, about the same weight as a Bowhead whale.

This number may be large, but it is not surprising, especially when you consider that the total number of insects on Earth have been estimated by famed biologists such as E. O. Wilson as ten quintillion. That’s 10,000,000,000,000,000,000, or, scientifically speaking: a metric shit-ton.



The above photo of “The World’s Most Badass Ladybug” was posted on Reddit, which I found as a great way to open the door for some great biological conversation!



While this bug may be in for an unexpectedly high (and probably fatal) ride, many insects do, in fact, travel quite high!



There is a billion-bug byway in the sky above your head, and you may not even know it! Some insects have been found as high as 19,000 feet! That’s higher than some private planes are allowed to fly, due to a need for pressurization!



Why do insects fly this high? The same reason you and I do: transportation! It’s possible that they even join the mile high club, just like humans, while airborne, but it’s probably a bit more difficult. Even spiders may throw out a piece of web to catch the breeze. Dispersion in the wind is a common tactic for many organisms to travel huge distances, which is how many pests for agriculture are spread! Tiny little bugs can travel much farther on a steady windstream than they could on foot.



Falling isn’t a problem for a little insect, as their surface area to body weight ratio is huge, allowing them to remain unscathed from falls that would kill a human easily.



Some estimates have put the number of sky-bound insects at over 3 billion a month over places like England in the summer! Other places have been estimated as high as 6 billion!



Let’s have some fun: if a ladybug weighs approximately 0.02 grams, and we assume most bugs weigh around the same, on average, that means that, over a month, there is 0.02 x 3,000,000,000 grams of bugs in the sky over a large city. This comes out to 60,000 kg (132,000 lbs) of insect biomass in the city air, about the same weight as a Bowhead whale.



This number may be large, but it is not surprising, especially when you consider that the total number of insects on Earth have been estimated by famed biologists such as E. O. Wilson as ten quintillion. That’s 10,000,000,000,000,000,000, or, scientifically speaking: a metric shit-ton.



How much wood could a woodchuck chuck if a woodchuck could chuck wood?



This question came to me courtesy of krikit386 on Reddit.Alright, let’s break this one down:
A common woodchuck (Marmota monax) is known to displace approximately 1 cubic meter of dirt in the construction of its burrow. If a woodchuck could chuck wood, instead of dirt, this would be equivalent to the weight of the dirt, so approximately 710 lbs of wood.
If a foot of dry, untreated pine 2x4” lumber weighs about 1.5 lbs, this equates to a woodchuck being able to chuck around 473 feet of 2”x4” lumber, or about 78 six-foot planks.



How much wood could a woodchuck chuck if a woodchuck could chuck wood?



This question came to me courtesy of krikit386 on Reddit.

Alright, let’s break this one down:



A common woodchuck (Marmota monax) is known to displace approximately 1 cubic meter of dirt in the construction of its burrow. If a woodchuck could chuck wood, instead of dirt, this would be equivalent to the weight of the dirt, so approximately 710 lbs of wood.



If a foot of dry, untreated pine 2x4” lumber weighs about 1.5 lbs, this equates to a woodchuck being able to chuck around 473 feet of 2”x4” lumber, or about 78 six-foot planks.



…this is vascular xylem right? Tell me my 9th grade AP biology class didn’t fail me.


Yes, this is the vascular system of the plant, but more than just the xylem! This may also contain the phloem system, which provides nutrients for the plant tissues!
The xylem system is for the conduction of water (though it can transport some nutrients, too) while the phloem system transports dissolved sugars to the cells of the plant, along with other nutrients such as nitrate (NO3-).

Vascular systems like these allow plants to draw up water/nutrients from their roots into the very top of their bodies. How does this work? Several methods! Think of how a straw works: you suck the liquid up the straw. What you’re doing is applying negative pressure to the top of the system, which draws liquid up. The liquid itself is cohesive (bonds to itself) and thus draws up more liquid behind it as it is sucked upward.

This system is driven by something called “water potential,” usually designated by a greek psi (ψ). The more negative the water potential, the more it “wants” water. If you compare a gradient (plant versus air, for example) you can tell where the water will move. Dry air is the “thirstiest” and has the lowest ψ value, thus, water is usually drawn constantly through the plant from the roots up through the leaves! Additionally, the roots of the plant can provide pressure, too!

Root pressure can be created if there are solutes within the plant, as this drives osmosis of water into the roots, which creates pressure in the xylem, assisting the transpiration of water from the air interface!

Neat!

The reason this skeletal like pattern remains in the leaves is due to higher concentrations of lignin (a strong carbon structural molecule that is what makes wood woody) in the tracheid xylem cells. The more easily decomposed cells will rot away, leaving the tougher skeletal lignin frame.



…this is vascular xylem right? Tell me my 9th grade AP biology class didn’t fail me.



Yes, this is the vascular system of the plant, but more than just the xylem! This may also contain the phloem system, which provides nutrients for the plant tissues!

The xylem system is for the conduction of water (though it can transport some nutrients, too) while the phloem system transports dissolved sugars to the cells of the plant, along with other nutrients such as nitrate (NO3-).



Vascular systems like these allow plants to draw up water/nutrients from their roots into the very top of their bodies. How does this work? Several methods! Think of how a straw works: you suck the liquid up the straw. What you’re doing is applying negative pressure to the top of the system, which draws liquid up. The liquid itself is cohesive (bonds to itself) and thus draws up more liquid behind it as it is sucked upward.



This system is driven by something called “water potential,” usually designated by a greek psi (ψ). The more negative the water potential, the more it “wants” water. If you compare a gradient (plant versus air, for example) you can tell where the water will move. Dry air is the “thirstiest” and has the lowest ψ value, thus, water is usually drawn constantly through the plant from the roots up through the leaves! Additionally, the roots of the plant can provide pressure, too!



Root pressure can be created if there are solutes within the plant, as this drives osmosis of water into the roots, which creates pressure in the xylem, assisting the transpiration of water from the air interface!



Neat!



The reason this skeletal like pattern remains in the leaves is due to higher concentrations of lignin (a strong carbon structural molecule that is what makes wood woody) in the tracheid xylem cells. The more easily decomposed cells will rot away, leaving the tougher skeletal lignin frame.



Here’s a short video that I shot recently that shows a very competent juvenile American Robin (Turdus migratorius) feeding in a mulberry tree (Morus rubra)!



If you’re wondering, you can tell a juvenile robin from an adult by the lack of a solid red chest coloration.  The males and females look very similar in adulthood, so don’t be fooled if you think only the males have the coloration!  Juveniles will have a mottled breast, speckled with browns. 



As for the mulberry, this is a great tree that we’ve seen give respite to many urban birds!  Our surveying group theorizes that mulberries may operate as hubs of activity for birds and other animals and contributes to high species diversity within the urban landscape.  Also, they’re delicious for humans, too!



Mulberries are a “multiple fruit,” and actually not a berry!  Multiple fruits are created when several flowers, each of which produces a fruit, coalesce into a single fruit.  One very large example of this phenomenon is the pineapple!

I’m running an experiment in our laboratory. I let it run. I step out into the hallway to stretch my legs and quietly admire the setting sun from the large hallway windows which stretches the length of the corridor from floor to ceiling. As I smile into the sunset, a robin flies into the window, recoils, flies into it again, bumps its beak, seemingly craps itself and then flies off. Nature is beautiful.
I’m running an experiment in our laboratory. I let it run. I step out into the hallway to stretch my legs and quietly admire the setting sun from the large hallway windows which stretches the length of the corridor from floor to ceiling. As I smile into the sunset, a robin flies into the window, recoils, flies into it again, bumps its beak, seemingly craps itself and then flies off. Nature is beautiful.